• Повышение пано. Самые важные вопросы о беге — интервью Михаилу Иванову. Порог анаэробного обмена: увеличение анаэробного обмена

  • 6. Понятие о дизадаптации, утрате адаптации и реадаптации, «цене» адаптации.
  • 7. Основные функциональные эффекты адаптации (экономизация, мобилизация, повышение резервных возможностей, ускорение процессов восстановления, устойчивость и надежность функций).
  • 8. Показатели тренированности в условиях покоя, при тестирующих (стандартных) и предельных (соревновательных) нагрузках.
  • 9. Понятие о срочном, отставленном и кумулятивном тренировочном эффекте.
  • 10. Функциональные резервы организма и их классификация. Мобилизация функциональных резервов.
  • 11. Позы и статические усилия. Феномен Лингарда.
  • 12. Классификация спортивных движений и упражнений по физиологическим критериям.
  • 13. Физиологическая характеристика спортивных упражнений аэробной мощности.
  • 14. Физиологическая характеристика спортивных упражнений анаэробной мощности.
  • 15. Характеристика циклических упражнений различной относительной мощности: максимальной, субмаксимальной, большой и умеренной.
  • 17. Общая характеристика стереотипных ациклических движений.
  • 18. Характеристика силовых и скоростно-силовых упражнений. Взрывные усилия.
  • 19. Прицельные упражнения, их влияние на различные системы организма.
  • 20. Характеристика движений, оцениваемых в баллах, их влияние на кислородный запрос, потребление и кислородный долг, работу вегетативных систем, развитие сенсорных систем и скелетных мышц.
  • 21. Характеристика ситуационных движений и видов спорта (спортивные игры, единоборства и кроссы).
  • 22. Ведущие физические качества, определяющие работоспособность в Вашем виде спорта. Физиологические методы их оценки.
  • 23. Гипертрофия мышц, виды гипертрофии. Влияние различных видов рабочей гипертрофии мышц на развитие силы и выносливости мышц.
  • 24. Механизмы внутримышечной и межмышечной координации в регуляции мышечного напряжения. Влияние симпатических нервов на проявление мышечной силы.
  • 25. Максимальная сила мышц. Максимальная произвольная сила. Физиологические механизмы регуляции мышечного напряжения. Силовой дефицит.
  • 26. Физиологические особенности тренировки силы мышц динамическими и статическими упражнениями.
  • 27. Физиологические механизмы развития скорости (быстроты) движений. Элементарные формы проявления быстроты (одиночных движений, двигательной реакции, смены циклов движений).
  • 28. Физиологические факторы, определяющие развитие скоростно-силовых качеств. Особенности проявления скоростно-силовых качеств в Вашем виде спорта.
  • 29. Скоростно-силовые упражнения. Центральные и периферические факторы, определяющие скоростно-силовые характеристики движений.
  • 31. Генетические и тренируемые факторы выносливости.
  • 32. Изменение чсс при динамической и статической мышечной работе. Контроль интенсивности аэробных нагрузок по чсс. Частота сердечных сокращений как критерий тяжести мышечной работы.
  • 33. Максимальная анаэробная мощность и максимальная анаэробная емкость – основа анаэробной выносливости.
  • 35. Порог анаэробного обмена (пано) и использование его в тренировочном процессе. Понятие об аэробной емкости и эффективности.
  • 36. Композиция мышц и аэробная выносливость. Кровоснабжение скелетных мышц при различных режимах сокращения и его связь с работоспособностью.
  • 38. Понятие о гибкости. Факторы, лимитирующие гибкость. Активная и пассивная гибкость. Влияние разминки, утомления, температуры окружающей среды на гибкость.
  • 40. Двигательные умения и навыки. Физиологические механизмы формирования двигательных навыков. Значение сенсорных и оперантных временных связей.
  • 41. Значение для формирования двигательных навыков ранее выработанных координаций (безусловных рефлексов и приобретенных навыков).
  • 42. Стабильность и вариативность компонентов двигательных навыков. Значение двигательного динамического стереотипа и экстраполяции в формировании двигательного навыка.
  • 43. Стадии формирования двигательных навыков (генерализации возбуждения, концентрации возбуждения, стабилизации и автоматизации навыка).
  • 44. Автоматизация движений, ее зависимость от размеров перемещаемой массы тела, утомления, возбудимости зон коры.
  • 45. Вегетативные компоненты двигательного навыка, их устойчивость.
  • 46. Программирование двигательного акта. Факторы, предшествующие программированию движений (афферентный синтез, принятие решения).
  • 47. Обратные связи и дополнительная информация и их роль в формировании и совершенствовании двигательного навыка. Речевая регуляция движений.
  • 48. Двигательная память, ее значение для формирования двигательного навыка.
  • 49. Устойчивость двигательных навыков. Факторы, нарушающие устойчивость навыков. Утрата компонентов навыка при прекращении систематических тренировок.
  • 51. Разминка, ее виды и влияние на системы организма. Влияние разминки на работоспособность. Длительность разминки. Особенности разминки в Вашем виде спорта.
  • 52. Врабатывание, его длительность при выполнении упражнений различного характера. Физиологические закономерности и механизмы врабатывания.
  • 53. «Мертвая точка» и «второе дыхание». Основные изменения в организме при этих состояниях.
  • 55. Утомление при мышечной работе. Особенности утомления в упражнениях различной мощности и при различных видах физических упражнений.
  • 56. Теории утомления. Центральные и периферические механизмы утомления. Особенности проявления утомления в Вашем виде спорта.
  • 57. Компенсированное (скрытое) и некомпенсированное (явное) утомление. Хроническое утомление, переутомление и перетренированность.
  • 58. Восстановительные процессы при выполнении и после мышечной работы и их общая характеристика. Фазы восстановления.
  • 60. Кислородный запрос в упражнениях различной мощности. Кислородный долг и его фракции.
  • 61. Средства, ускоряющие восстановительные процессы. Активный отдых, его значение для повышения работоспособности и эффективность после различных видов мышечной работы.
  • 62. Возрастная периодизация развития физиологических функций в онтогенезе.
  • 63. Возрастные особенности развития двигательных качеств и формирования двигательных навыков.
  • 70. Развитие двигательных качеств у женщин.
  • 71. Влияние тренировки на повышение функциональных возможностей женского организма.
  • 72. Физиологические особенности спортивной тренировки женщин.
  • 73. Влияние различных фаз омц на спортивную работоспособность женщин.
  • 74. Физиологические особенности мышечной деятельности в условиях повышенной температуры окружающей среды. Водно-солевой режим спортсмена.
  • 75. Рабочая гипертермия у спортсменов. Влияние повышенной температуры тела на работоспособность при выполнении физических упражнений различной предельной длительности.
  • 76. Гипоксия в условиях среднегорья и ее влияние на аэробную и анаэробную работоспособность.
  • 77. Физиологические основы повышения аэробной выносливости при тренировке в условиях средне- и высокогорья.
  • 78. Физиологические особенности мышечной деятельности в условиях пониженной температуры среды (на примере зимних видов спорта).
  • 79. Гипокинезия и ее влияние на функциональное состояние организма детей и взрослых. Физиологическое обоснование использования физических нагрузок в оздоровительных целях.
  • 80. Влияние физических упражнений на сердечно-сосудистую и дыхательную системы и мышечной аппарат людей зрелого возраста при занятиях физической культурой.
  • 81. Физическое здоровье человека и его критерии. Физиологические основы нормирования общей физической работоспособности лиц разного пола и возраста.
  • 35. Порог анаэробного обмена (пано) и использование его в тренировочном процессе. Понятие об аэробной емкости и эффективности.

    Снижение концентрации лактата в крови способствует повышение очень важного показателя –

    порога анаэробного обмена (ПАНО), величины нагрузки, при которой концентрация молочной кислоты в крови превышает 4 мМ/л. ПАНО является показателем аэробных возможностей организма и имеет прямую связь со спортивными результатами в видах спорта на выносливость. У тренированных спортсменов ПАНО достигается лишь при потреблении кислорода более 80% от МПК, а у нетренированных лиц – уже при 45-60% от МПК. Высокие аэробные возможности (МПК) у высококвалифицированных спортсменов определяются высокой производительностью сердца, т.е. МОК, что достигается за счет увеличения главным образом систолического объема крови, а ЧСС у них при максимальной нагрузке даже ниже, чем у нетренированных лиц.

    Увеличение систолического объема является следствием двух основных изменений в сердце:

    1) увеличение объема полостей сердца (дилятация);

    2) повышение сократительной способности миокарда.

    Одной из постоянных перестроек в деятельности сердца при развитии выносливости является

    брадикардия покоя (до 40-50 уд/мин и ниже), а также рабочая брадикардия, обусловленные

    снижением симпатических влияний и относительным преобладанием парасимпатических.

    36. Композиция мышц и аэробная выносливость. Кровоснабжение скелетных мышц при различных режимах сокращения и его связь с работоспособностью.

    Выносливость в значительной мере зависит от мышечного аппарата, в частности от композиции мышц, т.е. соотношения быстрых и медленных мышечных волокон. В скелетных мышцах выдающихся спортсменов, специализирующихся в видах спорта на выносливость, доля медленных волокон достигает 80% всех мышечных волокон тренируемой мышцы, т.е. в 1,5-2 раза больше, чем у нетренированных лиц. Многочисленные исследования показывают, что преобладание медленных волокон генетически предопределено, и соотношение быстрых и медленных мышечных волокон под влиянием тренировок практически не изменяется, но часть быстрых гликолитических волокон при этом может превратиться в быстрые окислительные.

    Один из эффектов тренировки на выносливость – увеличение толщины мышечных волокон, т.е. их рабочая гипертрофия по саркоплазматическому типу, которая сопровождается увеличением числа и размеров митохондрий внутри мышечных волокон, числа капилляров в расчете на одно мышечное волокно и на площадь поперечного сечения мышцы.

    В мышцах при тренировке выносливости происходят значительные биохимические изменения:

    1) увеличение активности ферментов окислительного метаболизма;

    2) увеличение содержания миоглобина;

    3) повышение содержания гликогена и липидов (до 50% по сравнению с нетренированными мышцами);

    4) повышение способности мышц окислять углеводы и особенно жиры.

    Тренированный организм относительно больше энергии

    при продолжительной работе получает за счет окисления жиров. Это способствует экономному использованию мышечного гликогена, снижает лактат в мышцах.

    37. Ловкость как проявление координационных способностей нервной системы. Показатели ловкости. Значение сенсорных систем, основной и дополнительной информации о движениях на проявление ловкости. Способность к расслаблению мышц, ее влияние на координацию движений.

    Ловкость – это способность к выполнению сложных по координации движений, проявление высоких координационных способностей нервной системы, т.е. сложного взаимодействия процессов возбуждения и торможения в двигательных нервных центрах.

    К ловкости относят также способность создавать новые двигательные акты и двигательные навыки, быстро переключаться с одного движения на другое при изменении ситуации.

    Критериями ловкости являются координационная сложность, точность движений и быстрота его выполнения.

    Программа (пространно-временная структура возбуждения мышц) сложно координированных движений, а также основная информация, поступающая через различные сенсорные системы, оставляют определенные следы в нервной системе, что при неоднократном их выполнении способствует запоминанию и программы, и полученных ощущений, т.е. формированию моторной памяти.

    Достаточно хорошо в памяти сохраняются последовательность и временные параметры различных фаз простых по структуре движений, но движения, имеющие сложную структуру, т.е. требующие ловкости, менее стойки. Поэтому даже спортсмены высокой квалификации при повторных выполнениях сложных по координации движений не каждый раз показывают свои лучшие результаты.

    Чрезмерно частое и длительное выполнение сложнокоординированных движений может привести к развитию перетренированности из-за перенапряжения подвижности нервных процессов. В то же время развитие координационных способностей способствует экономизации функций. Благодаря тонкой координации сокращения мышц снижается расход энергии на работу, нет чрезмерного возбуждение двигательных центров, четко взаимодействуют процессы возбуждения и торможения.

    Следовательно, развитие ловкости повышает работоспособность и отдаляет мышечное утомление.

  • Темповой бег является одной из ключевых тренировок, с помощью которых вы можете повысить порог анаэробного обмена (ПАНО)- главный физиологический показатель, который определяет спортивные результаты в беге на средние и длинные дистанции.

    Когда бегуны пытаются определить свой соревновательный темп на полумарафон или марафон, на самом деле они хотят найти тот быстрейший темп, который позволит им избежать значительного накопления лактата в крови и с хорошим результатом завершить гонку. Давайте же, избегая глубокого погружения в науку, коротко пройдемся по основным терминам и факторам, от которых зависит анаэробный/лактатный порог, а также рассмотрим самые простые и эффективные методы для его определения и повышения.

    Что такое лактат?

    Во время гликолиза (процесс обеспечения клеток энергией) происходит расщепление молекулы глюкозы, в результате чего образуется пировиноградная кислота (пируват). В обычных условиях, когда кислород поступает в достаточном количестве, в митохондриях (своеобразных энергетических станциях в клетках) происходит окисление пирувата до воды и углекислого газа с образованием большого количества АТФ (универсального источника энергии).

    Однако, когда интенсивность нагрузки превышает определений уровень, работа мышц уже не может обеспечиваться за счет только аэробного метаболизма, и в этих (анаэробных) условиях пируват преобразуется в молочную кислоту (лактат).

    При высокой концентрации лактата в крови возникает ацидоз (закисление) мышечных клеток. Этот процесс знаком каждому бегуну, так как он часто сопровождается болевыми ощущениями в мышцах и снижает их работоспособность. Чаще всего это случается, когда спортсмен выполняет ускорение, поэтому следует оттягивать момент наступления ацидоза как можно дольше.

    Совет: Очень важно на старте не поддаваться искушению и эмоциям и придерживаться выбранного темпа на гонку. Это позволит избежать закисления мышц на ранних этапах, и при необходимости вы сможете выполнить финишный рывок в конце забега.

    Что такое анаэробный (лактатный) порог?

    Когда мы выполняем обычную физическую деятельность, например, ходим пешком, то скорость образования и утилизации лактата примерно равны и его концентрация в крови и мышцах остается постоянной. Однако во время бега, когда интенсивность достигает определенного уровня, производство лактата начинает превышать темпы его нейтрализации. Эта зона интенсивности, которая также характеризует переход от аэробного к частично анаэробному механизму энергообеспечения и является порогом анаэробного обмена (ПАНО).

    Выдающийся итальянский тренер Ренато Канова в своей книге «Тренировка в марафонском беге: научный подход» определяет аэробный порог «как самую высокую интенсивность, при которой еще сохраняется равновесие между количеством производимой и поглощаемой молочной кислоты, и соответствует, в среднем, содержании лактата в крови около 4 ммоль на литр крови».

    Исследованиями ¹ доказано, что именно такая концентрация лактата в крови чаще всего соответствует ПАНО.

    При высоких показателях лактата нарушается работа сократительных механизмов внутри мышцы, что ухудшает координационные способности бегуна и вызывает мышечную усталость. Также происходит снижение утилизации жиров, и при значительном сокращении запасов гликогена обеспечение организма энергией окажется под угрозой.

    Совет: После интенсивных и тяжелых тренировок обязательно проводите активное восстановление или так называемую «заминку» - это позволит быстрее выводить лактат из крови и мышц.

    Анаэробный порог и максимальное потребление кислорода (МПК)

    Для бегунов хорошей новостью является тот факт, что они имеют возможность повысить уровень ПАНО (и следовательно свои результаты), даже когда достигли своего максимального МПК. Это в частности подтверждает исследование², проведенное выдающимся ученым и тренером Джеком Дэниэлсом, в котором было установлено, что бегуны продолжали улучшать свои результаты, несмотря на отсутствие роста МПК. Кроме того, следующее исследование³ показало, что темп на уровне ПАНО является лучшим прогностическим фактором для определения соревновательной скорости, нежели темп при МПК (94% против 79%).

    Поэтому со всей уверенностью можно утверждать, что лактатный порог это главный физиологический показатель, от которого зависит производительность бегуна в гонках свыше 10км.

    Давайте рассмотрим все это на простом примере. Два бегуна имеют одинаковое значение МПК (70мл/кг/мин), но различные ПАНО - 58мл/кг/мин и 52мл/кг/мин, что соответствует их 80% и 70% МПК. Если первый бегун сможет поддерживать соревновательный темп при потреблении кислорода 55мл/кг/мин, то второй начнет накапливать лактат и замедлиться.

    Определение ПАНО по ЧСС

    Очень важно уметь находить по пульсу те границы интенсивности, при которых анаэробные механизмы энергообразования еще не преобладают над аэробными, так как это определяет то, как долго вы сможете бежать в заданном темпе, не испытывая при этом сильных признаков утомления.

    Одним из главных аргументов в пользу анаэробного порога, как показателя интенсивности физической нагрузки является тот факт, что определить ЧССмах достаточно сложно даже для подготовленных спортсменов, не говоря о новичках. Также практические все формулы для вычисления ЧСС не дают точного результата, что может негативно отразиться на эффективности тренировок и вашем здоровье.

    Кроме того, разные люди, имея одинаковые показатели ЧССмах, могут достигать ПАНО при различных значениях ЧССмах. Например, бегун А достигает анаэробного порога при 85% от ЧССмах, бегун Б - при 70% от ЧССмах. Следовательно интенсивность бега 80% при ЧССмах бегун А сможет поддерживать, а спортсмен Б начнет накапливать лактат и будет вынужден снизить темп.

    Наверное самый простой метод для того, чтобы вычислить свою ЧСС при ПАНО, это способ, придуманный известным тренером по триатлону Джо Фрилом. Для этих целей требуется выполнить 30-минутный забег в равномерном темпе при максимальных усилиях. Среднее значение пульса за последние 20 минут как раз и будет соответствовать вашему текущему ПАНО.

    Подставив это значение в таблицу, вы сможете рассчитать свой пульс для различных уровней интенсивности, в т.ч. и ПАНО.

    Еще одним популярным способом для определения порога анаэробного обмена на основе пульсовых зон является тест 5 , придуманный выдающимся итальянским ученым Франческо Конкони. Его суть состоит в том, что пока вы постепенно и равномерно наращиваете темп, наблюдается линейная зависимость скорости от ЧСС. Однако при достижении определенной интенсивности наступает момент, когда ЧСС растет медленнее, чем скорость. Это точка отклонения приблизительно соответствует скорости при ПАНО. О том, как самостоятельно проводить тест Конкони, читайте .

    Используйте полученные значения ЧСС для того, чтобы подобрать оптимальный темп для различных типов тренировок. Также важно отметить тот факт, что с ростом вашей тренированности эти цифры могут изменяться.

    Совет: При тренировках по пульсу старайтесь «привязывать» темп бега к собственным ощущениям, это позволит вам лучше понимать свой организм и не навредить здоровью.

    Как определить темп при ПАНО (пороговый темп)

    В предыдущем разделе мы рассмотрели два метода, с помощью которых можно определить пороговый темп на основе показаний ЧСС.

    Самым точным способом оценки ПАНО является тест, который проводиться в современных спортивных лабораториях и центрах. Он представляет собой забег на беговой дорожке, в течение которого через определенные промежутки времени у вас берут кровь для анализа. Это позволяет измерить уровень концентрации лактата крови при определенной интенсивности бега.

    Другим технологичным способом для определения ПАНО является использование портативного лактометра. Однако оба эти метода достаточно дорогие и не всегда доступны обычному бегуну.

    Поэтому некоторыми известными учеными и тренерами по бегу были разработаны способы, которые позволяют достаточно точно вычислить ПАНО на основе соревновательных результатов. Ниже приведены самые популярные и эффективные из них.

    1. Пит Фитзингер

    В прошлом член олимпийской сборной США по марафону, известный физиолог и тренер Пит Фитзингер в своей книге «Бег по шоссе для серьезных бегунов» определяет пороговый темп как соревновательный темп на дистанциях15-21 км, которому соответствует пульс 85-92% от ЧССмах.

    2. Джо Фрил

    В предыдущем разделе мы уже рассматривали методику Фрила, с помощью которой можно измерить ПАНО на основе значений ЧСС. Также Фрил в своей книге «Библия триатлета» предлагает определить ПАНО, опираясь на результаты забегов на 5 и 10км.

    Таблица 1.2
    Время на 5км, мин:с Время на 10 км, мин:с Околопороговый темп (субПАНО), мин/км Темп при ПАНО, мин/км
    14:15 30:00 3,12-3,22 3,05-3,11
    14:45 31:00 3,17-3,28 3,10-3,17
    15:15 32:00 3,23-3,35 3,16-3,22
    15:45 33:00 3,28-3,40 3,21-3,28
    16:10 34:00 3,34-3,46 3,27-3,33
    16:45 35:00 3,40-3,52 3,32-3,39
    17:07 36:00 3,45-3,58 3,38-3,44
    17:35 37:00 3,51-4,04 3,43-3,50
    18:05 38:00 3,56-4,10 3,43-3,50
    18:30 39:00 4,02-4,16 3,54-4,01
    19:00 40:00 4,07-4,22 3,59-4,07
    19:30 41:00 4,13-4,27 4,05-4,12
    19:55 42:00 4,19-4,34 4,11-4,18
    20:25 43:00 4,24-4,39 4,16-4,24
    20:50 44:00 4,30-4,45 4,21-4,29
    21:20 45:00 4,35-4,52 4,27-4,35
    21:50 46:00 4,41-4,57 4,32-4,40
    22:15 47:00 4,47-5,03 4,17-4,37
    22:42 48:00 4,52-5,09 4,43-452
    23:10 49:00 4,58-5,15 4,49-4,57
    23:38 50:00 5,09-5,27 4,53-5,03
    24:05 51:00 5,15-5,33 4,59-5,08
    24:35 52:00 5,20-5,39 5,05-5,14
    25:00 53:00 5,26-5,44 5,10-5,20
    25:25 54:00 5,31-5,51 5,15-5,25
    25:55 55:00 5,37-5,57 5,21-5,31
    26:30 56:00 5,43-6,02 5,26-5,36
    26:50 57:00 5,48-6,09 5,31-5,42
    27:20 58:00 5,54-6,14 5,37-5,48
    27:45 59:00 5,59-6,20 5,43-5,53
    28:15 60:00 6,21-6,49 5,48-5,59

    3. VDOT

    Выдающийся ученый и тренер по бегу Джек Дэниелс и его бывший ученик Джимми Гилберт используя специальный показатель VDOT, основанный на значении скорости при МПК, установили взаимосвязь между соревновательными результатами бегунов на средние и длинные дистанции и их спортивными кондициями.

    С помощью таблиц VDOT бегун, отталкиваясь от собственных результатов, может спрогнозировать свое время на любой дистанции и определить необходимый темп для тренировок разных типов.

    Для лучшего удобства и простоты мы свели данные двух таблиц в специальный VDOT - калькулятор . Просто введите результат вашего забега на любой из предложенных дистанций и получите всю необходимую информацию, чтобы рассчитать необходимый уровень интенсивности для тренировок различных типов (в т.ч. и темп при ПАНО), а также узнать предполагаемое время по планируемой гонке.

    Какой метод дает самый точный результат? В исследовании 6 , проведенным учеными из Университета Восточной Каролины в Гринвилле, с участием бегунов на длинные дистанции и триатлетов было протестировано четыре способа определения ПАНО: таблицы VDOT, забег на 3200м7 ,тест Конкони и 30-минутный забег по Джо Фрилу. Затем результаты этих тестов сравнивались с данными, полученными в лабораторных условиях.

    Исследователи установили, что метод Фрила показывает самую точную связь между скоростью бега и ЧСС при ПАНО.

    Темповые тренировки для повышения ПАНО

    Тренировки в пороговом темпе вызывают следующие позитивные физиологические адаптации в организме, которые помогают нам становиться быстрее и выносливее:

    • Происходит увеличение размеров и количества митохондрий, благодаря чему мышцы могут производить больше энергии;
    • Улучшается работа системы аэробных ферментов, что позволяет ускорить выработку энергии в митохондриях;
    • Повышается плотность капилляров, вследствие чего происходит более эффективная доставка кислорода и питательных веществ в мышечные клетки и последующее удаление из них продуктов метаболизма;
    • Происходит повышение концентрации миоглобина - белка, который доставляет кислород в мышечные клетки.

    Тренировка 1.

    Пит Фитзингер предлагает в качестве темповой тренировки выполнить 20-40 минутный забег на уровне ПАНО.

    Пример: 3 км легкого бега, с последующими 6 км в темпе гонки на 15-21км и небольшой заминкой в конце.

    Тренировка 2.

    Вариант темпового бега от Джо Фрила: 15-30 минут бега по трассе с ровной поверхностью в темпе на 18-20 секунд медленнее, чем ваш соревновательный темп на 10 км. Это соответствует зонам интенсивности 4 и 5a таблицы 1.1. (Также для определения порогового темпа можете воспользоваться данными таблицы 1.2).

    Тренировка 3.

    Джек Дэниелс в своей книге от «800 метров до марафона» рассматривает темповую тренировку как 20-минутный забег в пороговом темпе. (Вы можете подобрать свой П-темп, используя наш калькулятор VDOT). Кроме того, Дэниелс считает, что более длительные тренировки с темпом немного ниже порогового, также могут принести значительную пользу. Поэтому ученый разработал специальную таблицу, которая позволяет бегунам корректировать свой темп в зависимости от времени тренировки.

    В таблице 1.3 приведены данные о километровом темпе для темповых забегов продолжительностью от 20 до 60 минут и его отличия (в секундах) от П-темпа. Также приведены данные об М-темпе и его отличиях от П-темпа.
    П-темп М-темп
    VDOT 20:00 25:00 30:00 35:00 40:00 45:00 50:00 55:00 60:00 60:00
    30 6:24 6:28
    (+4)
    6:32
    (+8)
    6:34
    (+10)
    6:36
    (+12)
    6:38
    (+14)
    6:40
    (+16)
    6:42
    (+18)
    6:44
    (+20)
    6:51
    (+27)
    35 5:40 5:44
    (+4)
    5:47
    (+7)
    5:49
    (+9)
    5:51
    (+11)
    5:53
    (+13)
    5:55
    (+15)
    5:57
    (+17)
    5:59
    (+19)
    6:04
    (+24)
    40 5:06 5:10
    (+4)
    5:13
    (+7)
    5:15
    (+9)
    5:17
    (+11)
    5:18
    (+12)
    5:20
    (+14)
    5:21
    (+15)
    5:22
    (+16)
    5:26
    (+20)
    45 4:38 4:42
    (+4)
    4:44
    (+6)
    4:46
    (+8)
    4:47
    (+9)
    4:49
    (+11)
    4:50
    (+12)
    4:51
    (+13)
    4:52
    (+14)
    4:56
    (+18)
    50 4:15 4:18
    (+3)
    4:21
    (+6)
    4:22
    (+7)
    4:24
    (+9)
    4:25
    (+10)
    4:26
    (+11)
    4:27
    (+12)
    4:29
    (+14)
    4:31
    (+16)
    55 3:56 3:59
    (+3)
    4:01
    (+5)
    4:03
    (+7)
    4:04
    (+8)
    4:05
    (+9)
    4:07
    (+11)
    4:08
    (+12)
    4:09
    (+13)
    4:10
    (+14)
    60 3:40 3:43
    (+3)
    3:44
    (+4)
    3:46
    (+6)
    3:47
    (+7)
    3:49
    (+9)
    3:50
    (+10)
    3:51
    (+11)
    3:52
    (+12)
    3:52
    (+12)
    65 3:26 3:29
    (+3)
    3:30
    (+4)
    3:32
    (+6)
    3:33
    (+7)
    3:34
    (+8)
    3:36
    (+10)
    3:37
    (+11)
    3:38
    (+12)
    3:37
    (+11)
    70 3:14 3:16
    (+2)
    3:18
    (+4)
    3:19
    (+5)
    3:20
    (+6)
    3:21
    (+7)
    3:23
    (+9)
    3:25
    (+11)
    3:26
    (+12)
    3:23
    (+9)
    75 3:04 3:06
    (+2)
    3:08
    (+4)
    3:09
    (+5)
    3:10
    (+6)
    3:11
    (+7)
    3:13
    (+9)
    3:14
    (+10)
    3:15
    (+11)
    3:11
    (+7)
    80 2:54 2:56
    (+2)
    2:57
    (+3)
    2:58
    (+4)
    3:00
    (+6)
    3:01
    (+7)
    3:02
    (+8)
    3:03
    (+9)
    3:04
    (+10)
    3:01
    (+7)
    85 2:46 2:48
    (+2)
    2:49
    (+3)
    2:50
    (+4)
    2:52
    (+6)
    2:53
    (+7)
    2:54
    (+8)
    2:55
    (+9)
    2:55
    (+9)
    2:52
    (+6)

    Самое главное правило, о котором говорят все специалисты и которого вы обязательно должны придерживаться - не превращайте темповую тренировку в гонку на время! Наибольшую пользу от таких забегов вы получите лишь в том случае, если будете придерживаться соответствующей интенсивности (в данном случае речь о скорости чуть выше или чуть ниже ПАНО, при котором концентрация лактата в крови незначительно повышается).

    При занятиях спортом необходимо следить за своим состоянием. Для этого используют четыре показателя: пульс, работоспособность, самочувствие и качество сна. Наиболее объективным из них является пульс.

    Методы подсчета пульса

    Пульс можно определить на основных артериях: на запястье у основания большого пальца, на шее или на виске. При пульсе выше 170 ударов в минуту, более достоверен его подсчет на левой стороне груди — в области верхушечного толчка сердца в районе пятого межреберья.

    Метод 15 секунд

    Подсчитайте пульс за 15 секунд. Умножьте результат на 4 — это дает приближенное значение частоты сердечных сокращений в минуту.

    Метод 15 ударов

    Этот метод несколько сложнее, но он дает более точный результат. Запустите секундомер на ударе «0» и остановите на ударе «15». Предположим, что в течение 15 ударов прошло 12,5 секунд. Тогда пульс равен: 15 × (60 / 12,5) = 72 удара в минуту.

    Метод 10 ударов

    Этим методом лучше пользоваться при измерении пульса при нагрузке, так как даже при короткой остановке пульс быстро замедляется. Запустите секундомер на ударе «0» и остановите на ударе «10». Если в течение 10 ударов прошло, например, 3,6 секунды, то пульс равен: 10 × (60 / 3,6) = 167 ударов в минуту. Полученное значение будет несколько ниже реального пульса во во время нагрузки. Точное значение можно измерить с помощью пульсометра.

    Основные показатели пульса

    В спорте используются три основные показателя: пульс в состоянии покоя, максимальный пульс и пульс в точке отклонения (анаэробный порог).

    Пульс в состоянии покоя

    Пульс в состоянии покоя показывает, с какой частотой должно работать сердце для обеспечения базовых процессов в организме. Он зависит от образа жизни и характеризует общий уровень аэробной подготовленности.

    Пульс в состоянии покоя обычно подсчитывают утром перед подъемом с постели. Для большей точности нужно подсчитать число ударов за полную минуту, повторив это измерение в течение нескольких дней и взяв минимальное из полученных значений.

    Каждый человек, серьезно занимающийся спортом, должен регулярно отслеживать свой утренний пульс и заносить его в дневник.

    У нетренированного здорового человека пульс в состоянии покоя обычно находится в диапазоне 60-90 ударов в минуту. У женщин он в среднем на 10 ударов выше, чем у мужчин. У хорошо подготовленных спортсменов на выносливость пульс в состоянии покоя может составлять 40-50 ударов в минуту и даже ниже.

    При регулярных аэробных тренировках утренний пульс постепенно снижается и может стать на 10-20 ударов в минуту меньше значения до их начала, что связано с увеличением объема и силы толчка сердца и пропускной способности сосудов. При прекращении тренировок пульс медленно возвращается к исходным значениям.

    Повышенный утренний пульс может быть первым признаком начинающейся перетренированности или вирусной инфекции. При затяжной перетренированности утренний пульс может заметно снизиться, что также является тревожным сигналом.

    Максимальный пульс

    Калькулятор

    Исходные данные

    Максимальный пульс

    187 уд./мин.

    Пульс имеет максимальный порог. Он индивидуален для каждого человека и снижается с возрастом — в среднем, на 7 ударов в минуту за каждые 10 лет. Максимальный пульс не зависит от уровня физической подготовки человека.

    Примерное значение максимального пульса можно рассчитать по формуле:

    Макс. пульс (ударов в минуту) = 208 − 0,7×возраст (лет).

    Более простая формула: 220 − возраст (лет), дает близкие значения для возраста 30-50 лет, но несколько занижает максимальный пульс для старших возрастов.

    Обе формулы — усредненные и имеют высокую погрешность: максимальный пульс конкретного человека может отличаться от расчетного на 10-20 ударов в минуту. Точное значение можно узнать, проведя тестовое измерение.

    С возрастом снижается не только максимальный пульс, но и другие показатели: пульс в состоянии покоя и пульс в точке отклонения. При этом на последние два показателя можно повлиять, регулярно занимаясь спортом.

    Измерение максимального пульса

    Максимальный пульс можно измерить на беговой дорожке, велоэргометре или аналогичном тренажере. Во время теста нагрузка постепенно повышается до момента, когда пульс прекратит возрастать с ростом интенсивности упражнения.

    Максимальный пульс достигается только при хорошем самочувствии и полном восстановлении после последней тренировки. Перед тестом нужно хорошо размяться: подойдут легкая пробежка, прогулка на велосипеде или лыжах. За разминкой следует интенсивная нагрузка продолжительностью 4-5 минут. Заключительные 20-30 секунд нагрузки выполняются с максимальным усилием. Пульс замеряют с помощью монитора сердечного ритма. Подсчет вручную не дает точных результатов из-за быстрого снижения пульса сразу после прекращения нагрузки.

    Нужно сделать несколько измерений в течение нескольких недель. Самый высокий показатель и будет являться максимальным пульсом.

    У одного и того же человека максимально достижимый пульс может зависеть от вида деятельности. При занятиях различными видами спорта рекомендуется измерить максимальный пульс для каждого из них в отдельности.

    Занятие на максимальном пульсе не должно превышать 5 минут. Поскольку оно сопряжено с определенным риском, его следует проводить под наблюдением врача, особенно мужчинам за 45 лет и женщинам за 55 лет, а также людям с проблемами с сердцем.

    Максимальное потребление кислорода

    Максимальное потребление кислорода (МПК) — это объем кислорода, который человек способен использовать во время нагрузки максимальной мощности. МПК выражается в литрах в минуту. Интенсивность нагрузки на уровне МПК не может поддерживаться дольше 5 минут.

    В норме между пульсом и потреблением кислорода наблюдается линейная зависимость.

    Под воздействием тренировок МПК может вырасти на 30%. МПК можно ориентировочно оценить по соотношению максимального пульса и пульса в состоянии покоя. Поскольку МПК зависит от веса человека, его обычно рассчитывают в миллилитрах на 1 кг веса:

    МПК (мл/мин*кг) = 15 × макс. пульс / пульс в покое.

    Другими словами, чем больше соотношение максимального пульса и пульса в состоянии покоя, тем выше интенсивность физической работы, которую может выдержать человек.

    Пульс в точке отклонения (анаэробный порог)


    При постепенном повышении интенсивности нагрузки (например, скорости бега) пульс до определенной точки возрастает линейно, а затем начинает отставать — на графике зависимости «нагрузка-пульс» появляется заметный изгиб. Эта точка называется точкой отклонения.

    Точка отклонения соответствует анаэробному порогу, то есть максимальной нагрузке, которую человек может длительно поддерживать без накопления молочной кислоты в мышцах.


    Анаэробный порог — наиболее объективный критерий тренированности на выносливость. У хорошо тренированных спортсменов пульс в точке отклонения может достигать 95% от максимального пульса. Потребление кислорода в точке отклонения также составляет высокий процент от МПК. Иными словами, тренированные спортсмены способны выполнять интенсивную работу в аэробной зоне; анаэробная система включается в работу только во время очень больших нагрузок.

    Пульс в точке отклонения следует измерять через каждые несколько недель, чтобы отслеживать изменения в уровне тренированности.

    Методы измерения пульса в точке отклонения

    В качестве первого приближения можно взять фактический пульс при беге с постоянной скоростью на дистанции 5 или 10 километров.

    Тест с равномерной нагрузкой. В течение 30-50 минут выполняется аэробная работа с наибольшим темпом, при котором упражнение может быть выполнено до конца без снижения нагрузки, а пульс остается стабильным. Этот пульс и будет равен пульсу в точке отклонения.

    Например, если вы можете ехать на велосипеде 30-50 минут с постоянной скоростью и стабильным пульсом на уровне 160 ударов в минуту, а при большей скорости вам не удается закончить дистанцию из-за усталости, то пульс в точке отклонения у вас равен 160 ударов в минуту.

    Тест с повышением нагрузки. После 10-минутной разминки, человек должен бежать или ехать на велосипеде в постоянном темпе в течение 10 минут, поддерживая постоянный пульс 140 ударов в минуту. Затем он увеличивает нагрузку до пульса 150 ударов в минуту и бежит еще 10 минут. На следующем 10-минутном отрезке нагрузка повышается еще на 10 ударов в минуту. Пульс, при котором выполнение нагрузки станет невозможным или потребует невероятных усилий, будет примерно на 5 ударов превышать пульс в точке отклонения.

    Точка отклонения и скорость бега на заданной дистанции

    Максимальная скорость бега, которая позволяет закончить заданную дистанцию, уменьшается с расстоянием. Скорость, соответствующая точке отклонения, является оптимальной для дистанции 16-17 км. Оптимальная скорость бега для 5-километровой дистанции на 9% выше, а для марафона (дистанция 42,195 км) — на 6% ниже скорости в точке отклонения.

    Эта зависимость позволяет вычислить скорость в точке отклонения по фактической скорости бега на данной дистанции, либо, наоборот, определить оптимальную скорость бега для заданной дистанции.

    Например, если человек пробегает дистанцию 5 км за 20 минут, то его скорость в точке отклонения равна 13,7 км/ч. Оптимальная скорость для марафона для него составляет 13 км/ч. Ожидаемый результат — 3 часа 40 минут.

    Тренировочные зоны по пульсу

    По пульсу можно подобрать оптимальную интенсивность тренировок исходя из их целей. Интенсивность упражнений при этом измеряется как процент пульса при нагрузке от максимального пульса или от пульса в точке отклонения (анаэробного порога).

    Тренировочная зона Значение пульса Механизм
    образования
    энергии
    Цель
    В % от макс. пульса В % от анаэроб-
    ного порога
    Аэробная зона
    Восстановительная 60–70 70–80 Восстановление после интенсивных тренировок или перерыва в занятиях
    Аэробная 1 70–80 80–90 Кислородный (углеводы и жиры) Развитие способности к использованию жиров как источника энергии
    Аэробная 2 80–85 90–95 Кислородный (больше углеводы)
    Развивающая зона
    Развивающая 1 85–90 95–100 Кислородный и лактатный (углеводы) Повышение анаэробного порога
    Развивающая 2 90–95 100–105
    Анаэробная зона
    Анаэробная 1
    (длительность
    усилия
    от 30 секунд
    до 3 минут)
    выше
    95
    выше 105 Лактатный и фосфатный
    Анаэробная 2
    (длительность
    усилия
    до 10 секунд)
    Фосфатный
    Тренировочные зоны по пульсу
    Значение пульса Механизм
    образо-
    вания энергии
    Цель
    В % от макс. пульса В % от ана-
    эроб-
    ного порога
    Восстановительная
    60–70 70–80 Кислород-
    ный (углеводы и жиры)
    Восстановле-
    ние после интенсивных тренировок или перерыва
    Аэробная 1
    70–80 80–90 Кислород-
    ный (углеводы и жиры)
    Развитие способности к использова-
    нию жиров как источника энергии
    Аэробная 2
    80–85 90–95 Кислород-
    ный (больше углеводы)
    Развитие способности выдерживать длительную высокую аэробную нагрузку
    Развивающая 1
    85–90 95–
    100
    Кислород-
    ный и лактатный (углеводы)
    Повышение анаэробного порога
    Развивающая 2
    90–95 100–
    105
    Кислород-
    ный и лактатный (углеводы)
    Повышение анаэробного порога
    Анаэробная зона 1 (длительность усилия от 30 секунд до 3 минут)
    выше
    95
    выше 105 Лактатный и фосфатный В зависимости от режима тренировок: выносливость к высокой концентрации молочной кислоты или развитие скоростных качеств
    Анаэробная зона 12 (длительность усилия до 10 секунд)
    выше
    95
    выше 105 Фосфатный Развитие максимальных скоростных качеств

    Основная часть тренировок на выносливость должна находиться в аэробной зоне 1 и 2 , то есть ниже анаэробного порога. При этом длительные занятия с низкой интенсивностью (в аэробной зоне 1 ) повышают способность организма утилизировать жиры и экономить углеводы.

    Развивающая зона расположена чуть выше и чуть ниже анаэробного порога; интервальные тренировки в этой зоне позволяют повысить анаэробный порог.

    В анаэробной зоне 1 энергия образуется в основном по лактатному механизму, что ведет к накоплению молочной кислоты в мышцах. В зависимости от уровня подготовки человек может находиться в этой зоне от 30 секунд до 3 минут.

    В анаэробной зоне 2 развивается максимальное усилие за счет работы фосфатной системы энергообеспечения. Такое усилие может длиться не более 10 секунд.

    В восстановительной зоне интенсивность упражнения слишком низкая для развития аэробных способностей организма. Она используется для активного отдыха после интенсивных тренировок (в частности, ускоряет выведение молочной кислоты) или для восстановления после перерыва в занятиях.

    Определение зон интенсивности по анаэробному порогу

    Границы тренировочных зон лучше всего определять по анаэробному порогу.

    Расчет по максимальному пульсу имеет приближенный характер. Если при этом используется оценка максимального пульса по возрасту (самый простой метод в практике), то погрешность может достигать неприемлемых значений — 20-30 ударов в минуту.

    Анаэробный порог является более точным ориентиром, поскольку именно он определяет границу между кислородным и лактатным механизмом образования энергии в мышцах.

    В среднем анаэробный порог равен примерно 90% от максимального пульса, но при этом он сильно зависит от степени тренированности человека. Например, у спортсмена-любителя анаэробный порог может составлять 75% от максимального пульса, а у профессионального спортсмена — 95%. В этом случае интенсивность тренировок, определенная по максимальному пульсу, будет завышенной для спортсмена-любителя и недостаточной для профессионального спортсмена.

    По мере улучшения аэробных способностей в результате тренировок, границы тренировочных зон повышаются пропорционально увеличению пульса в точке отклонения.

    Субъективная оценка интенсивности нагрузки

    Интенсивность нагрузки можно достаточно точно определить по собственным ощущениям.

    Шкала оценки интенсивности нагрузки по ощущениям

    1. «Очень низкая»
    2. «Низкая»
    1. «Средняя»
    2. «Высокая»
    1. «Очень высокая»

    Оценка интенсивности нагрузки одним и тем же человеком относительно постоянна и отражает уровень концентрации молочной кислоты в мышцах. Интенсивность в аэробной зоне 2 ощущается как «средняя». Сопоставляя пульс и нагрузку можно научиться определять и другие тренировочные зоны по ощущениям.

    По книге Петера Янсена «ЧСС, лактат и тренировки на выносливость».

    Порог анаэробного обмена (ПАНО)

    Для аэробного окисле ния субстрата до воды и углекислого газа при физической нагруз ке необходимы следующие условия: 1) достаточная плотность ми тохондрий в мышечных волокнах сократительных единиц, которая позволяет удовлетворять требованиям ресинтеза АТФ аэробным путем; 2) промежуточные продукты обмена и ферменты, не лими тирующие скорость метаболических реакций в цикле Кребса при данной нагрузке; 3) достаточная доставка кислорода к цели транспортом электронов в митохондриях (К. Wasserman, В. Whipp, 1975).

    Если аэробная деструкция субстрата лимитируется одним или несколькими из этих факторов, начинается анаэробный метабо лизм, который поддерживает необходимую скорость продукции АТФ. Момент включения механизмов анаэробной энергопродукции при мышечной нагрузке зависит от разных обстоятельств, среди которых главное место занимает физическая подготовленность (тре нированность) индивидуума. Так, мощность нагрузки при работе с возрастающей интенсивностью, когда анаэробные процессы начи нают улавливаться лабораторными методами, обозначается как порог анаэробного обмена (ПАНО). Она выражается в единицах мощности работы (Вт) или в процентах потребления кислорода от максимума аэробной мощности.

    Квалифицированные спортсмены могут выполнять нагрузки выше ПАНО (аэробный порог) без существенного дальнейшего прироста молочной кислоты.

    ПАНО (анаэробный порог) обозначается как начало заметного отклонения концентрации молочной кислоты, показателей внеш него дыхания, кислотноосновного состояния (ЧСС) крови, свиде тельствующих о коренной перестройке регуляторных функций и энергообеспечения мышечной деятельности.

    Исследования изменений биохимических и газометрических показателей у спортсменов во время ступенеобразно повышающей ся нагрузки (PWC l70 , тредбан и др.) выделяют три фазы.

    В таблице показаны трехфазный характер изменений концент рации молочной кислоты, доминирующие источники энергии и рек рутированные мышечные волокна в каждой фазе аэробно-анаэроб ного перехода.

    В первой фазе по мере возрастания нагрузки увеличивается ути лизация кислорода в работающих мышцах. При интенсивной нагруз ке концентрация молочной кислоты начинает незначительно увели чиваться, поэтому первую фазу можно обозначить как аэробную.

    Во второй фазе при повышении нагрузки до 40-65% от МПК и ЧСС до 150-170 уд/мин потребление кислорода и ЧСС продолжа ют линейно расти, увеличивается вентиляция легких. Эту фазу можно обозначить как период изокапнического буферирования с достаточно эффективной респираторной конденсацией.

    В третьей фазе, при дальнейшем возрастании мощности нагруз ки (65-85% от МПК), начинается усиленное выделение молочной кислоты, концентрация ее в среднем превышает 4 ммоль/л, что приводит к заметному снижению рН крови и концентрации гидрогенкарбонатных ионов.

    Значение границ аэробно-анаэробного перехода зависит от спе циализации (вида спорта) и тренированности спортсмена.

    Исследования показывают, что у нетренированных людей порог аэробного обмена находится на уровне 40--45%, у тренированных -- 55-60%, у спортсменов экстракласса, тренирующихся в цикличес ких видах спорта (марафонский бег, лыжные гонки и др.), - около 70% от максимума потребления кислорода (С.С. Williams etal., 1967). Практически это означает, что спортсмен, имеющий более высокий ПАНО 2 , может поддерживать на дистанции более высокий темп без значительного накопления в организме продуктов анаэробного об мена (молочная кислота и другие метаболиты).

    Максимальное потребление кислорода (МПК) и уровень ПАНО зависят от режима тренировок. Эти два параметра могут изменять ся независимо друг от друга и обнаруживают большую индивиду альную вариабельность.

    Спортсменам на выносливость необходимо тренировать спсобность своего организма поддерживать высокий уровень интенсивности и скорости на протяжении всей дистанции соревнований, чтобы проходить ее настолько жестко и настолько быстро, насколько это возможно. На короткой гонке мы способны поддерживать более высокий темп, чем на длиной - почему? Многое в ответе на этот вопрос связано с анаэробным порогом (или АнП). Организм человека может поддерживать скорость выше Анп не более часа, после чего кумулятивный эффект высокого уровня лактата начинает ухудшать работоспособ ность. Чем короче гонка, тем больше лактата может быть накоплено в организме. Таким образом, для поддержания высокой скорости в соревнованиях на выносливость, особенно тех, что длятся более часа, важно иметь высокий АнП. Для того, чтобы повысить АнП, необходимо тренироваться по ЧСС на уровне или чуть ниже АнП. ПАНО - порог анаэробного обмена;

    Тест .

    Задача: Оценить величину анаэробного порога и использовать данный уровень интенсивности, а также субьективное восприятие нагрузки и темп, соответствующие уровню, в тренировках. Необходимое оборудование:

    Монитор сердечного ритма, журнал для записи данных – пройденой дистанции, времени, средней ЧСС во время нагрузки, субьективные ощущения во время нагрузки (по шкале от 1 до 10, где 10 – максимальное усилие). Выполнение:

    Выберите место и метод тестирования. Бег – 5-10 км Велосипед – 25-40 км Перед началом теста разомнитесь в течение 15 минут с умеренной интенсивностью. Пройдите дистанцию с максимальной скоростью, которую можете поддерживать без потери темпа (это самая трудновыполнимая задача в тесте). Если чствуете, что замедляетесь, значит; вы начали в темпе, который превышает ваш АнП.

    Прекратите тест и повторите его на следующей неделе, начав в более низком темпе.

    Засеките время прохождения дистанции.

    После 5-ти мин работы ЧСС должна стабилизироваться. ЧСС, которой вы достигнете через 5 мин и которую сможете поддержать в течение всей оставшейся дистанции будет являться ЧСС на уровне АнП. Сделайте 15-ти минутную разминку после теста. Большинство тренировок в «четвертой зоне» лучше проводить на пульсе на 5-10 ударов ниже АнП. Преждевременные высокоинтенсивные тренировки, вероятнее всего, приведут к раннему пику формы, либо вовсе его не достижению.

    Еще один метод по определению максимального пульса.

    Перед тестом сделайте разминку продолжительностью не менее 20 минут и хорошо растянитесь. От вас требуется хорошая скорость и мотивация при выполнении нагрузки. Используйте пульсометр, который обеспечит точность и легкость измерения ЧСС. При использовании монитора вы сможете в ходе теста определить свой анаэробный порог, если зафиксируете ЧСС в тот момент, когда почувствуте явную нехватку кислорода.

    Не выполняйте нижеприведеные тесты, если вам больше 35 лет, если вы не проходлии медицинское обследование с нагрузочным тестом или если вы находитесь в плохой форме.

    Бег: беговой тест заключается в пробегании 1,6 км дистанции по равнинной трассе илиатлетической дорожке с максимально возможной скоростью. Последнюю четверть дистанции неободимо пробежать изо всех сил. Засеките время бега. На него вы сможете потом ориентироваться процессе дальнейшей подготовки. На финише остановитесь, и сразу же подсчитайте пульс. Это будет ваша ЧСС max. Велосипед: Велотест включает педалирование на велотренажере или велоргометре (лучше использовать свой велосипед) с максимально взможной скоростью в течение 5 минут. Последние 30 с теста необходимо педалировать изо всех сил, затем остановиться и немедленно подсчитать пульс. Полученное значение будет являться вашей ЧСС max.

    Узнав ЧСС max и ЧCC в покое можно приступить к расчету уровней интенсивности (тренировочных зон).

    Метод, который Р. Слимейкера и Р. Браунинга.

    Для начала надо найти Резерв ЧСС по формуле: ЧСС max – ЧСС в покое. А затем полученное число умножаем: 1 уровень – 0,60-0,70 2 уровень – 0,71-0,75 3 уровень – 0,76-0,80 4 уровень – 0,81-0,90 5 уровень – 0,91-1,00

    ЛДГ или лактатдегидрогеназа, лактат – фермент , участвующий в процессе окисления глюкозы и образовании молочной кислоты. Лактат (соль молочной кислоты) образуется в клетках в процессе дыхания. ЛДГ содержится почти во всех органах и тканях человека, особенно много его в мышцах. При полноценном снабжении кислородом лактат в крови не накапливается, а разрушается до нейтральных продуктов и выводится. В условиях гипоксии (недостатка кислорода) накапливается, вызывает чувство мышечной усталости, нарушает процесс тканевого дыхания. Анализ биохимии крови на ЛДГ проводят для диагностики заболеваний миокарда (сердечной мышцы), печени, опухолевых заболеваний.

    При выполнении ступенчатого теста имеет место явление, которое принято называть аэробным порогом (АэП). Появление АэП свидетельствует о рекрутировании всех ОМВ (окислительные мышечные волокна). По величине внешнего сопротивления можно судить о силе ММВ, которую они могут проявить при ресинтезе АТФ и КрФ за счет окисли-тельного фосфорилирования.

    Дальнейшее увеличение мощности требует рекрутирования более высокопороговых двигательных единиц (МВ), это усиливает процессы анаэробного гликолиза, больше выходит лактата и ионов Н в кровь. При попадании лактата в ОМВ он превращается обратно в пируват с помощью фермента лактатдегидрогиназа по сердечному типу (ЛДГ Н). Однако мощность митохондриальной системы ОМВ имеет предел. Поэтому сначала наступает предельное динамическое равновесие между образованием лактата и его потреблением в ОМВ и ПМВ, а затем равновесие нарушается, и некомпенсируемые метаболиты - лактат, Н, СО2 - вызывают резкую интенсификацию физиологических функций. Дыхание один из наиболее чувствительных процессов, реагирует очень активно. Кровь при прохождении легких в зависимости от фаз дыхательного цикла должна иметь разное парциальное напряжение СО2. «Порция» артериальной крови с повышенным содержанием СО2 достигает хеморецепторов и непосредственно модулярных хемочувствительных структур ЦНС, что и вызывает интенсификацию дыхания. В итоге СО2 начинает вымываться из крови так, что в результате средняя концентрация углекислого газа в крови начинает снижаться. При достижении мощности, соответствующей АнП, скорость выхода лактата из работающих гликолитических МВ сравнивается со скоростью его окисления в ОМВ. В этот момент субстратом окисления в ОМВ становятся только углеводы (лактат ингибирует окисление жиров), часть из них составляет гликоген ОМВ, другую часть - лактат, образовавшийся в гликолитических МВ. Использование углеводов в качестве субстратов окисления обеспечивает максимальную скорость образования энергии (АТФ) в митохондриях ОМВ. Следовательно, потребление кислорода или (и) мощность на анаэробном пороге (АнП) характеризует максимальный окислительный потенциал (мощность) ОМВ.

    Дальнейший рост внешней мощности делает необходимым вовлечение все более высокопороговых ДЕ, иннервирующих гликолитические МВ. Динамическое равновесие нарушается, продукция Н, лактата начинает превышать скорость их устранения. Это сопровождается дальнейшим увеличением легочной вентиляции, ЧСС и потребления кислорода. После АнП потребление кислорода в основном связано с работой дыхательных мышц и миокарда. При достижении предельных величин легочной вентиляции и ЧСС или при локальном утомлении мышц потребление кислорода стабилизируется, а затем начинает уменьшаться. В этот момент фиксируют МПК.

    Изменение потребления кислорода (VO2) и увеличение концентрации лактата в крови при постепенном увеличении скорости бега.

    На графике изменения лактата (La) можно найти момент начала рекрутирования гликолитических мышечных волокон. Он получил название - аэробный порог (AeT). Затем, при достижении концентрации лактата 4 мМ/л или при обнаружении резкого ускорения накопления лактата находят анаэробный порог (AnT) или момент предельного динамического равновесия между продукцией лактата частью гликолитических мышечных волокон и потреблением его в окислительных мышечных волокнах, сердце и дыхательных мышцах. В этот же момент интенсифицируется дыхание и выделение углекислого газа. Концентрация норадреналина (NAd) изменяется с ростом напряженности выполнения физического упражнения, с ростом психического напряжения. Ve - легочная вентиляция (л/мин), HR - частота сердечных сокращений (ЧСС, уд/мин), MaeC - максимальное потребление кислорода.

    Таким образом, МПК есть сумма величин потребления кислорода окислительными МВ тестируемых мышц, дыхательными мышцами и миокардом.

    Энергообеспечение мышечной активности в упражнениях длительностью более 60 секунд в основном идет за счет запасов гликогена в мышце и в печени. Однако продолжительность выполнения упражнений с мощностью от 90 % максимальной аэробной мощности (МАМ) до мощности АнП не связана с исчерпанием запасов гликогена. Только в случае выполнения упражнения с мощностью АнП отказ от поддержания заданной мощности возникает в связи с исчерпанием в мышце запасов гликогена.

    Таким образом, для оценки запасов в мышцах гликогена необходимо определить мощность АнП и выполнять такое упражнение до предела. По длительности поддержания мощности АнП можно судить о запасах гликогена в мышцах.

    Увеличение мощности АнП, иначе говоря, рост митохондриальной массы ММВ, приводит к адаптационным процессам увеличению количества капилляров и их плотности (последнее вызывает увеличение транзитного времени крови). Это дает основание к предположению, что увеличение мощности АнП одновременно говорит о росте как массы ОМВ, так и степени капилляризации ОМВ.

    Прямые показатели функционального состояния спортсменов

    Функциональное состояние спортсмена определяется морфологической и (или) функциональной адаптацией систем организма для выполнения основного соревновательного упражнения. Самые заметные изменения происходят в таких системах организма, как сердечнососудистая, дыхательная, мышечная (опорно-двигательный аппарат), эндокринная, иммунная.

    Производительность мышечной системы зависит от следующих параметров. Мышечная композиция по типу мышечного сокращения (процент быстрых и медленных мышечных волокон), которая определяется активностью фермента АТФ-аза. Процент этих волокон генетически детерминирован, т.е. в процессе тренировки не меняется. К изменяемым показателям относятся количество митохондрий и миофибрилл в окислительных, промежуточных и гликолитических мышечных волокнах, различающихся между собой плотностью митохондрий около миофибрилл и активностью ферментов митохондрий сукцинатдегидргеназы и лактатдегидргеназы по мышечному и сердечному типу; структурные параметры эндоплазматической сети; количество лизосом, количество субстратов окисления в мышцах: гликогена, жирных кислот в скелетных мышцах, гликогена в печени.

    Доставка кислорода к мышцам и выведение продуктов обмена определяется минутным объемом крови и количеством гемоглобина в крови, который определяет способность переносить кислород определенным объемом крови. Минутный объем крови рассчитывается как произведение текущего ударного объема сердца на текущую частоту сердечных сокращений. Максимальная ЧСС по литературным данным и нашим исследованиям, лимитирована определенным количеством ударов в минуту, порядка 190-200, после чего общая производительность сердечно-сосудистой системы резко снижается (уменьшается минутный объем крови) из-за возникновения такого эффекта как дефект диастолы, при котором происходит резкое снижение ударного объема крови. Из этого следует, что изменение максимального ударного объема крови в прямой пропорциональности изменяет минутный объем крови. Ударный объем крови связан с размерами сердца и степенью дилятации левого желудочка и является производной двух составляющих - генетической и процесса адаптации к тренировкам. Увеличение ударного объема, как правило, наблюдается у спортсменов, специализирующихся в видах спорта, связанных с проявлением выносливости.

    Производительность дыхательной системы определяется жизненной емкостью легких и плотностью капиляризации внутренней поверхности легких.

    В процессе спортивной тренировки эндокринные железы претерпевают изменения, связанные, как правило, с увеличением их массы и синтеза большего количества гормонов, необходимых для адаптации к физическим нагрузкам (при правильной тренировке и системе восстановления). В следствие воздействия с помощью специальных физических упражнений на железы эндокринной системы и повышения синтеза гормонов, происходит воздействие на иммунную систему, тем самым улучшая иммунитет спортсмена.

      Янсен П. ЧСС, лактат и тренировки на выносливость. Пер. с англ.- Мурманск: Издательство «Тулома», 2006.- 160 с.

      Отчет по теме № 732а «Разработка информационных технологий описания биологических процессов у спортсменов»

      A. Seireg, A. Arvikar. The prediction of muscular load sharing and joint forces in the lower extremities during walking. // J. of Biomech., 1975. - 8. - P. 89 - 105.

      P. N. Sperryn, L. Restan. Podiatry and Sports Physician - An Evaluation of Orthoses // British Journal of Sports Medicine. - 1983. - Vol. 17. - No. 4. - P. 129 - 134.

      A. J. Van den Bogert, A. J. Van Soest. Optimisation of power production in cycling using direct dynamics simulations. // IV int. Sym. Biom., 1993.

    Метаболическая система снабжает мышцы топливом в виде углеводов, жиров и белков. В мышцах источники топлива превращаются в более полезную с точки зрения энергии форму, именуемую аденозинтрифосфат (АТФ). Этот процесс может происходить как в аэробной, так и в анаэробной форме.

    Аэробное производство энергии возникает при легком и ненапряженном катании. Основным источником энергии здесь служат жиры. В процессе принимает участие кислород, необходимый для преобразования топлива в АТФ. Чем медленнее вы ездите, тем больше жиров расходует организм и больше углеводов накапливается в мышцах. По мере ускорения темпа организм постепенно отказывается от жиров и переходит к углеводам как основному источнику энергии. При напряженных усилиях организму начинает требоваться больше кислорода, чем он получает при обычном катании, вследствие чего АТФ начинает производиться в анаэробной форме (то есть буквально «без участия кислорода»).

    Анаэробные упражнения связаны с углеводами как основным источником топлива. По мере превращения углеводов в АТФ в мускулы попадает и побочный продукт, называемый молочной кислотой. Это приводит к возникновению наверняка знакомого вам по напряженным упражнениям ощущения жжения и тяжести в конечностях. По мере того как молочная кислота просачивается из мышечных клеток в кровоток, от нее отделяется молекула водорода, вследствие чего кислота преобразуется в лактат. Лактат накапливается в крови, и его уровень можно измерить с помощью пробы из пальца или мочки уха. Молочная кислота производится организмом всегда.

    Порог анаэробного обмена - это показатель представляет собой уровень напряжения, при котором обмен веществ, или метаболизм, переходит из аэробной формы в анаэробную. Вследствии этого лактат начинает производиться так быстро, что организм оказывается не в состоянии эффективно от него избавиться. Если я (автор ДЖО ФРИЛ - «Библия велосипедиста» ) буду медленно наливать воду в картонный стакан с отверстием в дне, она будет выливаться так же быстро, как я ее наливаю. Именно это происходит с лактатом в нашем организме при низком уровне напряжения. Если же я буду наливать воду быстрее, то она начнет накапливаться в стакане, невзирая на то, что какая-то ее часть будет, как и прежде, выливаться. Именно этот момент и является аналогией ПАНО , возникающего при более высоком уровне напряжения. ПАНО - крайне важный показатель.

    Спортсмены целесообразно научиться тому, как можно грубо оценить уровень своего ПАНО в полевых условиях. Для этого ему следует контролировать свой уровень напряжения и отслеживать момент возникновения жжения в ногах.

    Ступенчатый тест на велосипедном тренажере

      Провести разминку 5-10 минут

      В течение всего теста вы должны поддерживать заранее заданный уровень мощности или скорости. Начните с уровня 24 км в час или 100 ватт и повышайте каждую минуту скорость на 1,5 км в час или мощность на 20 ватт до тех пор, пока вам хватает сил. Оставайтесь в седле на протяжении всего теста. Переключать передачи можете в любое время.

      По окончании каждой минуты сообщайте ассистенту (или запоминайте сами, или диктуйте на диктофон) показатель вашего напряжения, определяя его с помощью шкалы Борга (предварительно разместив ее в удобном месте).

      По истечении каждой минуты записывается уровень выходной мощности, показатель напряжения и величину ЧСС. После чего повышается мощность на новый уровень.

      Ассистент (или вы сами) внимательно наблюдает за вашим дыханием и отмечает момент, в который оно становится стесненным. Этот момент обозначается аббревиатурой VT (вентиляторный порог).

      Продолжайте упражнение до тех, пока вы можете выдерживать заданный уровень мощности на протяжении хотя бы 15 секунд.

      Полученные по итогам теста данные будут выглядеть примерно так.

    Шкала воспринимаемого напряжения

    6 - 7 = Чрезвычайно легкое 8 - 9 = Очень легкое 10 - 11 = Сравнительно легкое 12 - 13 = Отчасти тяжелое 14 - 15 = Тяжелое 16 - 17 = Очень тяжелое 18 - 20 = Чрезвычайно тяжелое

    Тестирование критической мощности

    Проведите пять индивидуальных гонок на время, желательно в течение нескольких дней. - 12 секунд - 1 минута - 6 минут - 12 минут - 30 минут

    В ходе каждого теста вы должны прилагать максимум усилий на всем протяжении. Не исключено, что для определения правильного темпа потребуется предпринять две или три попытки на протяжении нескольких дней или даже недель.

    Расчеты для большей продолжительности – в 60, 90 и 180 минут – могу быть произведены с помощью графика путем продления вправо прямой, проведенной через точки КМ12 и КМ30, и отметки на ней нужных точек.

    Вы можете также оценить значения для этих дополнительных данных с помощью простых математических вычислений. Для расчета мощности 60-минутного интервала отнимите 5% от величины мощности для 30-минутного интервала. Для примерного расчета мощности 90-минутного интервала отнимите 2,5% от показателя мощности для 60-минутного интервала. Если же вы отнимите 5% от показателя мощности для 90-минутного интервала, то получите мощность для 180-минутного интервала.

    Примерная схема прилагается (у каждого свои показатели)

    График Тестированиея критической мощности

    Материал взят из книги Джо Фрила «Библия велосипедиста»